Product Code Database
Example Keywords: kindle fire -retro $85-127
barcode-scavenger
   » » Wiki: Dilated Cardiomyopathy
Tag Wiki 'Dilated Cardiomyopathy'.
Tag

Dilated cardiomyopathy ( DCM) is a condition in which the and cannot pump effectively. Symptoms vary from none to feeling tired, , and shortness of breath. It may also result in or fainting. Complications can include , heart valve disease, or an .

Causes include , alcohol, , certain toxins, complications of pregnancy, and certain . Coronary artery disease and high blood pressure may play a role, but are not the primary cause.

(2025). 9780323529570, Elsevier Health Sciences. .
In many cases the cause remains unclear. It is a type of , a group of diseases that primarily affects the . The diagnosis may be supported by an electrocardiogram, , or .

In those with heart failure, treatment may include medications in the , , and families. A low salt diet may also be helpful. In those with certain types of irregular heartbeat, or an implantable cardioverter defibrillator may be recommended. Cardiac resynchronization therapy (CRT) may be necessary. If other measures are not effective a may be an option in some.

About 1 per 2,500 people is affected. It occurs more frequently in men than women. Onset is most often in middle age. Five-year survival rate is about 50%. It can also occur in children and is the most common type of cardiomyopathy in this age group.


Signs and symptoms
Dilated cardiomyopathy develops insidiously, and may not initially cause symptoms significant enough to impact on quality of life.
(2025). 9781605477237, Wolters Kluwer/Lippincott Williams & Wilkins.
Nevertheless, many people experience significant symptoms. These might include:

A person who has dilated cardiomyopathy may have an , with and an elevated jugular venous pressure and a low . Signs of mitral and tricuspid regurgitation may be present.


Causes
Although in many cases no cause is apparent, dilated cardiomyopathy is probably the result of damage to the produced by a variety of , , or infectious agents. In many cases the cause remains unclear. It may be due to fibrous change of the myocardium from a previous myocardial infarction. Or, it may be the late sequelae of acute viral , such as with Coxsackie B virus and other
(2025). 9781416029731, Saunders.
possibly mediated through an immunologic mechanism. Specific are detectable in some cases.Yoshikawa T, Baba A, Nagatomo Y. Autoimmune mechanisms underlying dilated cardiomyopathy. Circ J. 2009 Apr;73(4):602-7. doi: 10.1253/circj.cj-08-1151. Epub 2009 Feb 26. PMID 19246813.

Other causes include:

  • , due to Trypanosoma cruzi. This is the most common infectious cause of dilated cardiomyopathy in Latin America
  • : Dilated cardiomyopathy occurs late in gestation or several weeks to months postpartum as a peripartum cardiomyopathy. It is reversible in half of cases.
  • Alcohol use disorder (alcoholic cardiomyopathy)
  • Non-alcoholic toxic insults include administration of certain chemotherapeutic agents, in particular (Adriamycin), and .
  • Inflammatory diseases such as and connective tissue diseases
  • Tachycardia-induced cardiomyopathy
  • Muscular dystrophy
  • : 1 to 2% of TB cases.
  • mechanisms
  • Thiamine deficiency

Recent studies have shown that those subjects with an extremely high occurrence (several thousands a day) of premature ventricular contractions (extrasystole) can develop dilated cardiomyopathy. In these cases, if the extrasystole are reduced or removed (for example, via ablation therapy) the cardiomyopathy usually regresses.


Genetics
>CMD1A [[LMNA]]1q21
>CMD1B unknown (TMOD1 candidate)9q13
>CMD1C LDB310q22-q23
>CMD1D TNNT21q32
>CMD1E SCN5A3p
>CMD1F 6q23
>CMD1G Titin]]2q31
>CMD1H 2q14-q22
>CMD1I Desmin]]

>CMD1K 6q12-q16
>CMD1L SGCD5q33
>CMD1M CSRP311p15.1
>CMD1N TCAP17q12
>CMD1O ABCC912p12.1
>CMD1P Phospholamban]]6q22.1
>CMD1Q 7q22.3-q31.1
>CMD1R ACTC15q14
>CMD1S MYH714q12
>CMD1T [[TMPO]]12q22
>CMD1U PSEN114q24.3
>CMD1V PSEN21q31-q42
>CMD1W metavinculin]]10q22-q23
>CMD1X fukutin]]9q31
>CMD1Y TPM115q22.1
>CMD1Z TNNC13p21.3-p14.3
>CMD1AA ACTN21q42-q43
>CMD2A TNNI319q13.4
>CMD3A Tafazzin]]Xq28
>CMD3B dystrophin]]Xp21.2
> ALPK315q25.3

About 25–35% of affected individuals have familial forms of the disease, with most affecting genes encoding proteins, while some affect other proteins involved in contraction. The disease is genetically heterogeneous, but the most common form of its transmission is an autosomal dominant pattern. Autosomal recessive (as found, for example, in Alström syndrome), (as in Duchenne muscular dystrophy), and mitochondrial inheritance of the disease is also found. Some relatives of those affected by dilated cardiomyopathy have preclinical, asymptomatic heart-muscle changes.

Other cytoskeletal proteins involved in DCM include α-cardiac actin, , and the nuclear A and C. Mitochondrial deletions and mutations presumably cause DCM by altering myocardial . Nuclear coding variations for mitochondrial complex II have also shown pathogenicity for dilated cardiomyopathy, designated 1GG for SDHA.

Kayvanpour et al. performed 2016 a meta-analysis with the largest dataset available on genotype-phenotype associations in DCM and mutations in lamin (LMNA), phospholamban (PLN), RNA Binding Motif Protein 20 (RBM20), Cardiac Myosin Binding Protein C (MYBPC3), Myosin Heavy Chain 7 (MYH7), Cardiac Troponin T 2 (TNNT2), and Cardiac Troponin I (TNNI3). They also reviewed recent studies investigating genotype-phenotype associations in DCM patients with titin (TTN) mutations. LMNA and PLN mutation carriers showed a high prevalence of cardiac transplantation and ventricular arrhythmia. Dysrhythmias and sudden cardiac death (SCD) was shown to occur even before the manifestation of DCM and heart failure symptoms in LMNA mutation carriers.


Pathophysiology
The progression of heart failure is associated with left ventricular remodeling, which manifests as gradual increases in left ventricular end-diastolic and end-systolic volumes, wall thinning, and a change in chamber geometry to a more spherical, less elongated shape. This process is usually associated with a continuous decline in ejection fraction. The concept of cardiac remodeling was initially developed to describe changes that occur in the days and months following myocardial infarction.


Compensation effects
As DCM progresses, two compensatory mechanisms are activated in response to impaired myocyte contractility and reduced stroke volume:
  • Frank-Starling law
  • Neurohormonal feedback, via activation of the sympathetic nervous system and the renin-angiotensin system.
These responses initially compensate for decreased cardiac output and maintain those with DCM as asymptomatic. Eventually, however, these mechanisms become detrimental, intravascular volume becomes too great, and progressive dilatation leads to heart failure symptoms.


Computational models
Cardiac dilatation is a transversely , irreversible process resulting from excess strains on the . A computation model of volumetric, isotropic, and cardiac wall growth predicts the relationship between cardiac strains (e.g. volume overload after myocardial infarction) and dilation using the following governing equations:

F = F^e \cdot F^g\,

where F^e is elastic volume stretch that is reversible and F^g is irreversible, isotropic volume growth described by:

F^g = \mathbb{I}+\lambda^{g}-1f_{0}\otimes f_{0} \,

where f_{0} is a vector, which points along a 's long axis and \lambda^g is the cardiomyocyte stretch due to growth. The total cardiomyocyte growth is given by:

\lambda = \lambda^e \cdot F\lambda^g\,

The above model reveals a gradual dilation of the , especially the ventricular myocardium, to support the blood in the chambers. Dilation manifests itself in an increase in total cardiac mass and cardiac diameter. Cardiomyocytes reach their maximum length of 150 \mum in the endocardium and 130 \mum in the epicardium by the addition of . Due to the increase in diameter, the dilated heart appears spherical in shape, as opposed the elliptical shape of a healthy human heart. In addition, the ventricular walls maintain the same thickness, characteristic of pathophysiological cardiac dilation.


Valvular effects
As the ventricles enlarge, both the mitral and tricuspid valves may lose their ability to come together properly. This loss of coaptation may lead to mitral and tricuspid regurgitation. As a result, those with DCM are at increased risk of atrial fibrillation. Furthermore, stroke volume is decreased and a greater volume load is placed on the ventricle, thus increasing heart failure symptoms.


Diagnosis
Generalized enlargement of the heart is seen upon normal . may also be noticed, which is due to pulmonary venous hypertension.

The electrocardiogram often shows sinus tachycardia or atrial fibrillation, ventricular arrhythmias, left atrial enlargement, and sometimes intraventricular conduction defects and low voltage. When left bundle-branch block (LBBB) is accompanied by right axis deviation (RAD), the rare combination is considered to be highly suggestive of dilated or congestive cardiomyopathy. shows left ventricular dilatation with normal or thinned walls and reduced ejection fraction. Cardiac and coronary angiography are often performed to exclude ischemic heart disease.

can be important, since one study has shown that gene mutations in the TTN gene (which codes for a protein called ) are responsible for "approximately 25% of familial cases of idiopathic dilated cardiomyopathy and 18% of sporadic cases." The results of the genetic testing can help the doctors and patients understand the underlying cause of the dilated cardiomyopathy. Genetic test results can also help guide decisions on whether a patient's relatives should undergo genetic testing (to see if they have the same genetic mutation) and cardiac testing to screen for early findings of dilated cardiomyopathy.

Cardiac magnetic resonance imaging (cardiac MRI) may also provide helpful diagnostic information in patients with dilated cardiomyopathy.


Treatment

Medical therapy
Drug therapy can slow down progression and in some cases even improve the heart condition. Standard therapy may include salt restriction, , , and . may also be used for antithrombotic therapy. There is some evidence for the benefits of coenzyme Q10 in treating heart failure.

may improve functional performance in patients with severe cardiac decompensation while raises cardiac output and ejection fraction only at rest.Pier Giuseppe Agostoni M.D., Elisabetta Doria M.D., Marco Berti M.D., Maurizio D. Guazzi M.D.: Long-term use of K-strophanthin in advanced congestive heart failure due to dilated cardiomyopathy: A double-blind crossover evaluation versus digoxin Https://doi.org/10.1002/clc.4960171005Citations. In: onlinelibrary.wiley.com


Electrical treatment
Artificial pacemakers may be used in patients with intraventricular conduction delay, and implantable cardioverter-defibrillators in those at risk of arrhythmia. These forms of treatment have been shown to prevent sudden cardiac death, improve symptoms, and reduce hospitalization in patients with systolic heart failure.
(2016). 9781259585111, McGraw-Hill Education.
In addition, an implantable cardioverter-defibrillator should be considered as a therapeutic option for the primary prevention of sudden cardiac death in patients with a confirmed LMNA mutation responsible for dilated cardiomyopathy disease phenotype and clinical risk factors. A novel risk score calculator has been developed that allows calculation of risk of sustained ventricular arrhythmia in the next 5 years in patients with DCM.Kayvanpour E, Sammani A, Sedaghat-Hamedani F, Lehmann DH, Broezel A, Koelemenoglu J, Chmielewski P, Curjol A, Socie P, Miersch T, Haas J, Gi WT, Richard P, Płoski R, Truszkowska G, Baas AF, Foss-Nieradko B, Michalak E, Stępień-Wojno M, Zakrzewska-Koperska J, Śpiewak M, Zieliński T, Villard E, TeRiele ASJM, Katus HA, Frey N, Bilińska ZT, Charron P, Asselbergs FW, Meder B. A novel risk model for predicting potentially life-threatening arrhythmias in non-ischemic dilated cardiomyopathy (DCM-SVA risk). Int J Cardiol. 2021 Sep15;339:75-82. doi: 10.1016/j.ijcard.2021.07.002. Epub 2021 Jul 7. PMID 34245791. https://www.ikard.pl/SVA/


Surgical treatment
In patients with advanced disease who are refractory to medical therapy, heart transplantation may be considered. For these people, 1-year survival approaches 90% and over 50% survive greater than 20 years.


Epidemiology
Although the disease is more common in African-Americans than in Caucasians, it may occur in any patient population.


Research directions
Therapies that support reverse remodeling have been investigated, and this may suggests a new approach to the prognosis of cardiomyopathies (see ventricular remodeling).


Animals
In some types of animals, both a hereditary and acquired version of dilated cardiomyopathy has been documented.


Dogs
Dilated cardiomyopathy is a heritable disease in some dog breeds, including the Boxer, , , , and St Bernard. Treatment is based on medication, including ACE inhibitors, , and phosphodiesterase inhibitors.

An acquired variation of dilated cardiomyopathy describing a link between certain diets was discovered in 2019 by researchers at University of California, Davis School of Veterinary Medicine who published a report on the development of dilated cardiomyopathy in dog breeds lacking the genetic predisposition, particularly in . The diets associated with DCM were described as "BEG" (boutique, exotic-ingredient, and/or grain-free) dog foods, as well as legume-rich diets. For treating diet-related DCM, food changes, taurine and carnitine supplementation may be indicated even if the dog does not have a documented taurine or carnitine deficiency although the cost of carnitine supplementation may be viewed as prohibitive by some


Cats
Dilated cardiomyopathy is also a disease affecting some cat breeds, including the Oriental Shorthair, Burmese, Persian, and Abyssinian. In cats, taurine deficiency is the most common cause of dilated cardiomyopathy. As opposed to these hereditary forms, non-hereditary DCM used to be common in the overall cat population before the addition of taurine to commercial cat food.


Other animals
There is also a high incidence of heritable dilated cardiomyopathy in captive ( Mesocricetus auratus), due in no small part to their being highly . The incidence is high enough that several strains of Golden Hamster have been developed to serve as animal models in clinical testing for human forms of the disease.


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time